Given:
Stopping potential ,\((V_0)\propto h^xA^yG^zc^r...(i))\)
Where,
ā= plank's constant \(=\left [ ML^2T^{-1} \right ]\)
š¼= current \(=\left [ A \right ]\)
šŗ= Gravitational constant \(=\left [M^{-1}L^3T^{-2} \right ]\)
š= speed of light \(=\left [ LT^{-2} \right ]\)
š= potential \(=\left [ ML^2T^{-3}A^{-1} \right ]\)
By putting all the dimensions in equation (š) we get,
\(\left [ ML^2T^{-3}A^{-1} \right ]=\left [ ML^2T^{-1} \right ]^x\left [ A \right ]^y\left [ M^{-1}L^3T^{-2} \right ]^s\left [ LT^{-1} \right ]^r\)
\(\left [ ML^2T^{-3}A^{-1} \right ]=\left [ M \right ]^{x-z}\left [ L \right ]^{2x+3z+r}\left [ T \right ]^{-x-2z-r}\left [ A \right ]^y\)
Comparing the exponents on both sides,
\(1=x-z...(ii)\)
\(1=2x+3z+r...(iii)\)
\(-3=-x-2z-r...(iv)\)
\(-1=y...(v)\)
By solving all the equations, we get
\(y=-1,~x=0,~z=-1,~r=5\)
Therefore, by putting the values in equation (š) we get,
\(v\propto h^0A^{-1}G^{-1}c^5\)
Final Answer: (š)