It is given that,
l−5m+3n=0
l=5m−3n
And,
7l2+5m2−3n2=0
7(5m−3n)2+5m2−3n2=0
7(25m2+9n2−30mn)+5m2−3n2=0
180m2+60n2−210mn=0
6m2+2n2−7mn=0
6m2−4mn−3mn+2n2=0
2m(3m−2n)−n(3m−2n)=0
(2m−n)(3m−2n)=0
2m−n=0
m=n2
And,
3m−2n=0
m=23n
So, when m=n2, then, n=2m,
l=5m−3(2m)
l=5m−6m
l=−m
l−1=m1
And since m1=n2, so,
l−1=m1=n2
The direction cosines will be,
l√l2+m2+n2=−1√(−1)2+(1)2+(2)2
=−1√6
m√l2+m2+n2=1√(−1)2+(1)2+(2)2
=1√6
n√l2+m2+n2=2√(−1)2+(1)2+(2)2
=2√6
Thus, direction cosines is −1√6,1√6,2√6.
When, m=23n, then, n=32m,
l=5m−3(32m)
l=5m−92m
l=m2
l1=m2
And since m1=2n3, then m2=n3, so,
l1=m2=n3
The direction cosines will be,
l√l2+m2+n2=1√(1)2+(2)2+(3)2
=1√14
m√l2+m2+n2=2√(1)2+(2)2+(3)2
=2√14
n√l2+m2+n2=3√(1)2+(2)2+(3)2
=3√14
Thus, direction cosines is 1√14,2√14,3√14.