Consider the given equation,
l−5m+3n=0l=5m−3n --------(1)
Substitute for l in 7l2+5m2−3n2=0
7(5m−3n)2+5m2−3n2=0
7(25m2+9n2−30mn)+5m2−3n2=0
175m2+63n2−210mn+5m2−3n2
180m2+60n2−210mn
30(6m2+2n2−7mn)=0
6m2+2n2−7mn=0
(3m−2n)(2m−n)=0
Hence,
3m−2n=0 or 2m−n=0
Case (1) : 3m−2n=0 ⟹m=2n3
Substitute for m in (1)
l=5m−3n=5(2n3)−3n=n3
Hence, the direction cosines (l,m,n) is (n3,2n3,n)
The direction ratio is proportional to (1,2,3) ----- {multiplying by 3}
We have the formula for Direction cosines, (a√a2+b2+c2,b√a2+b2+c2,c√a2+b2+c2)
∴(1√12+22+32,2√12+22+32,3√12+22+32)=(±1√14,±2√14,±3√14) are the direction cosines
Case (2) : 2m−n=0 ⟹m=n2
Substitute for m in (1)
l=5m−3n=5(n2)−3n=−n2
Hence, the direction cosines (l,m,n) is (−n2,n2,n)
The direction ratio is proportional to (−1,1,2) ----- {multiplying by 2}
We have the formula for Direction cosines, (a√a2+b2+c2,b√a2+b2+c2,c√a2+b2+c2)
∴(−1√(−1)2+12+22,1√(−1)2+12+22,2√(−1)2+12+22)=(±1√6,±1√6,±2√6) are the direction cosines