The correct option is C <1,1,√2>
Let A(1,0,0) & B(0,1,0) be two points on the plane and direction ratio of its normal be ai+bj+ck, then (ai+bj+ck).→BA=0
⇒(ai+bj+ck).(i−j)=0
⇒a=b ....(1)
Since, ai+bj+ck makes an angle π4 with x+y−3=0
Therefore, cosπ4=(ai+bj+ck).(i+j)√(a2+b2+c2)(12+12)
⇒1√2=a+b√2(a2+b2+c2)=2a√2(2a2+c2) ....[ from (1) ]
⇒2a2+c2=4a2
⇒c=±√2a
Therefore, direction ratios are (a,b,c)=(a,a,±√2a)=(1,1,±√2)
Ans: B