The directrix of the parabola x2−4x−8y+12=0 is
y=-1
Given : x2−4x−8y+12=0
⇒ (x−2)2−4−8y+12=0
⇒ (x−2)2=8y−8
⇒ (x−2)2=8(y−1)
Putting X=x-2,Y=y-1 :
X2=8Y
Comparing with X2=4aY:
a=2
Equation of the directrix :
Y=-a
⇒ Y=−2
⇒ y−1=−2
⇒ y=−2+1
⇒ y=−1