Generally, displacement vector is given by,
\(r = x \hat{i} + y \hat{j}\)
\(x = A \cos \omega t, y = B \sin \omega t\)
\(\dfrac{x}{A} = \cos \omega t\) ...\((i)\)
\(\dfrac{y}{B} = \sin \omega t\) ...\((ii)\)
Squaring & adding \((i)\), \((ii)\)
\(\dfrac{x^2}{A^2} + \dfrac{y^2}{B^2} = 1\)
Which is the equation of ellipse.
\(\text{Final Answer}: \dfrac{x^2}{A^2} + \dfrac{y^2}{B^2} = 1\)
\(\text{Find velocity of the particle.}\)
Given,
\(\overrightarrow{r}(t) = \hat{i} A \cos \omega t + \hat{j} B \sin \omega t\) ...\((i)\)
Differentiate equation \((i)\) with respect to \(t\)
\(\dfrac{dr}{dt} = v = - \hat{i} \omega A \sin \omega t + \hat{j} \omega B \cos \omega t\) \((ii)\)
\(\text{Find acceleration of the particle.}\)
Differentiate equation \((ii)\) with respect to \(t\)
\(a = \dfrac{dv}{dt} = - \hat{i} \omega^2 A \cos \omega t - \hat{j} \omega^2 B \sin \omega t\)
\(a = - \omega^2 ( \hat{i} A \cos \omega t + \hat{j} B \sin \omega t) = - \omega^2 \overrightarrow{r}\)
We know, \(F = ma\)
\(\therefore\) \(\overrightarrow{F} = -m \omega^2\overrightarrow{r}\)