The correct option is
B 7.5Given lines
x+54=y+3−18=z−6−4-----(1)
x−32=y+10−9=z−1−2------(2)
on comparing both lines with general cartesian form
normal vector of line
→b=2^i−9^j−2^k
position vector of line eq (1)
→a=−5^i−3^j+6^k
position vector of line (2)
→c=3^i−10^j+^k
→c−→a=3^i−10^j+^k−(−5^i−3^j+6^k)
→c−→a=3^i−10^j+^k+5^i+3^j−6^k
→c−→a=8^i−7^j−6^k
(→c−→a)×→b=∣∣
∣
∣∣^i^j^k8−7−62−9−2∣∣
∣
∣∣
(→c−→a)×→b=^i(14−54)−^j(−16+12)+^k(−72+14)
(→c−→a)×→b=−40^i+4^j−58^k
formula to find distance between parallel lines
SD=∣∣(→c−→a)×→b∣∣∣∣→b∣∣
SD=∣∣−40^i+4^j−58^k∣∣√22+(−9)2+(−2)2
SD=√(−40)2+42+(−58)2√4+81+4
SD=√1600+16+3364√89
SD=√4980√89
SD=√55.95
SD=√55.95
SD=7.5 approx