The distance between the foci of the hyperbola 9x2−16y2+18x+32y−151 = 0 is
2
8
10
6
9x2−16y2+18x+32y−151=0
⇒ 9(x2+2x)−16(y2−2y) = 151
⇒ 9(x+1)2−16(y−1)2=9−16+151 = 1414
⇒ (x+1)216−(y−1)29=1
a = 4 ,b=3
e = √1+916=54
5S1=2ae=2.4.54 = 10