The distance between the lines 4x+3y=11 and 8x+6y=15 is :
Given−theequationsoftwoparallellinesare4x+3y=11⟹4x+3y−11=0≡a1x+b1y+c1=0 .......(i)and8x+6y=15⟹8x+6y−15=0≡a2x+b2y+c2=0 ........(ii).Tofindout−theperpendiculardistancebetweentwoparallellines=?Solution−Theperpendiculardistancedbetweentwoparallellines=differencedbetweentheirdistancesfromtheorigin.Nowtheperpendiculardistance=pofalineax+by+c=0fromtheoriginisp=c√a2+b2.From(i)a1=4,b1=3&c1=−11.∴p1=c1√a12+b12=∣∣ ∣∣−11√42+32∣∣ ∣∣units=115units.Again,from(ii),a2=8,b2=6&c1=−15.∴p2=c1√a22+b22=∣∣ ∣∣−15√82+62∣∣ ∣∣units=1510units.Sod=|p1−p2|=∣∣∣115−1510∣∣∣units=710units.∴Thedistancebetweenthegivenlines=710units.Ans−OptionD.