The correct option is
B √3812Given lines
x−23=y−34=z−14
x−231=y−341=z−141------(1)
x−12=y−23=z−34
x−121=y−231=z−341------(2)
on comparing both lines with general cartesian form
normal vector
→b=^i+^j+^k
position vector of line (1)
→a=23^i+34^j+14^k
position vector of line (2)
→c=12^i+23^j+34^k
→c−→a=12^i+23^j+34^k−(23^i+34^j+14^k)
→c−→a=12^i+23^j+34^k−23^i−34^j−14^k
→c−→a=−16^i−112^j+12^k
(→c−→a)×→b=∣∣
∣
∣
∣∣^i^j^k−16−11212111∣∣
∣
∣
∣∣
(→c−→a)×→b=^i(−112−12)−^j(−16−12)+^k(−16+112)
(→c−→a)×→b=−712^i+23^j−112^k
formula to find distance between parallel lines
SD=∣∣(→c−→a)×→b∣∣∣∣→b∣∣
SD=∣∣∣−712^i+23^j−112^k∣∣∣√12+12+12
SD=√(−712)2+(23)2+(−112)2√3
SD=√49144+49+1144√3
SD=√49144+49+1144√3
SD=√114144√3
SD=√3812