The distance between the planes →r.(2i−j+3k)=4 and →r.(6i−3j+9k)+13=0 is:
The distance between the parallel planes r.(2i−j+3k)=4 and r.(2i−j+3k)=−133
[∵r.(6i−3j+9k)+13=0⇒r.(2i−j+3k)=−133]
is ∣∣∣4−(−133)∣∣∣√22+(−1)2+32 (∵ required distance =|d−k|n)
=∣∣∣4+133∣∣∣√4+1+9=253√14