The distance between the points (acos55∘, 0) and (0, acos35∘) is -
a
The distance between (acos55∘, 0) and (0, acos35∘) is
√(acos55∘−0)2+(0−acos35∘)2
=√a2cos255∘+a2cos235∘
=a√cos255∘+cos235∘
We know that cos 55 = sin 35
So the distance will be
a√sin235∘+cos235∘
sin2x + cos2x = 1
Thus, distance = a√1 = a.