The correct option is A 85
9x2−24xy+16y2−12x+16y−12=0⇒(3x−4y)2−4(3x−4y)−12=0
⇒(3x−4y+2)(3x−4y−6)=0
So, the lines will be 3x−4y+2=0; 3x−4y−6=0
Hence, distance between lines is
|−6−2|5=85 units
Alternate solution:
∵h2−ab=144−16⋅9=0
∴ Given line represents parallel lines
So, distance =2√g2−aca(a+b)
=2√36−9(−12)9(9+16)=2×1215=85 units