The correct option is
D 475√6Given eq of lines
x+22=y−23=z+11-----(1)
x−11=y+12=z−24-----(2)
position vector of line (1)
→a=−2^i+2^j−^k
position vector of line (2)
→c=^i−^j+2^k
normal vector of line (1)
→b=2^i+3^j+^k
normal vector of line (2)
→d=^i+2^j+4^k
shortest between two skews line
SD=∣∣→AC⋅(→b×→d)∣∣∣∣→b×→d∣∣
AC=→c−→a
AC=^i−^j+2^k−(−2^i+^j−^k)
AC=3^i−2^j+3^k
→b×→d=∣∣
∣
∣∣^i^j^k231124∣∣
∣
∣∣
→b×→d=^i(12−2)−^j(8−1)+^k(4−3)
→b×→d=10^i−7^j+^k
∣∣→b×→d∣∣=√102+(−7)2+12
∣∣→b×→d∣∣=√100+49+1
∣∣→b×→d∣∣=√150
putting AC →b×→d,∣∣→b×→d∣∣ in formula
SD=∣∣(3^i−2^j+3^k)⋅(10^i−7^j+^k)∣∣√150
SD=|30+14+3|√150
SD=47√150
SD=475√6
Hence it is correct ans.