The distance, from the origin, of the normal to the curve, x=2cost+2tsint,y=2sint−2tcost at t=π4, is
x=2cost+2tsint
dxdt=2tcost+2sint−2sint=2tcost
y=2sint−2tcost
dydt=2cost+2tsint−2cost=2tsint
dydx=2tsint2tcost(t=π4)
dydx=1
dxdy=−1 for slope of normal.
x(π4)=2cos(π4)+2.π4sin(π4)=√2(1+π4)
y(π4)=2sin(π4)−2.π4cos(π4)=√2(1−π4)
Equation of normal with given point
x+y−2√2=0
d=(2√2)√2=2