The correct option is C a(1+ecosθ)
Given,Equation of ellipse as x2a2+y2b2=1
Any point on the ellipse will be (acosθ,bsinθ)
⇒P=(acosθ,bsinθ)
Center of ellipse =(0,0) and ellipse is parallel to horizontal axis.
⇒Fociofellipse,F=(h−ae,k)( if (h,k) as its center)
⇒F=(0−ae,0)=(−ae,0)
Distance FP=√(−ae−acosθ)2+(bsinθ−0)2
=√(−ae−acosθ)2+(a√(1−e2)sinθ−0)2 (since b=a√1−e2)
=a×√((−e−cosθ)2+(√(1−e2)sinθ−0)2)
=a×√((e2+cos2θ+2ecosθ+(1−e2)sin2θ))
=a×√((e2+cos2θ+2ecosθ+sin2θ−e2sin2θ))
=a×√((e2+2ecosθ+1−e2sin2θ)) (since sin2θ+cos2θ=1)
=a×√((1+2ecosθ+e2(1−sin2θ)))
=a×√((1+2ecosθ+e2cos2θ))
=a×√((1+ecosθ)2)
FP=a(1+ecosθ)