The correct option is C √3710
x+33=y−45=z+86=t
∴x=3t−3
y=5t+4 z=6t−8
Any point on the given line is Q(3t−3,5t+4,6t−8)P(−2,4,−5)
Direction ratios of PQ are 3t−3+2,5t+4−4,6t−8+5 i.e. 3t−1,5t,6t−3
PQ is perpendicular to given line
∴3(3t−1)+5(5t)+6(6t−3)=0
9t−3+25t+36t−18=0
70t=21
t=2170=310
Q[910−3,1510+4,1810−8]
Q[−2110,5510,−6210]
PQ=√(−2110+2)2+(5510−4)2+(−6210+5)2
=√(110)2+(1510)2+(−1210)2
=√1+225+144100=√370100
PQ=√3710