The correct option is D 1√5
Distance of any point (x,y) from y=2x−1 is: ∣∣∣y−2x+1√5∣∣∣.
If (x,y) is on y=x4+3x2+2x then the distance S=x4+3x2+1√5
dSdx=4x3+6x√5
⇒dSdx=0
⇒x=0
Also, S′(x)<0 for x<0 and S′(x)>0 for x>0
Thus S is minimum when x=0
⇒Smin=1√5