The correct option is D 37√35
Given line is x−1−1=y−02=z+13=r(say)...(i)
Then, coordinates of any point N on the line are
(−r+1,2r,3r−1)....(ii)
Let N be the foot of the perpendicular to line (i)
∴ Direction ratios of PN are
(−r+1−2,2r−3,3r−1−4)=(−r−1,2r−3,3r−5)....(iii)
∵PN is perpendicular to line (i).
∴a1a2+b1b2+c1c2=0
⇒−(−r−1)+2(2r−3)+3(3r−5)=0
⇒r+1−4r−6+9r−15=0
⇒r=107
∴ From Eq. (iii)
N=(−107+1,207,307−1)
=(−37,207,237)
∴ Perpendicular distance
PN=√(−37−2)2+(207−3)2+(237−4)2
=17√289+1+25=37√35.