Given, x=√at2+2bt+c
Differentiating with respect to time
dxdt=v=12√at2+2bt+c×(2at+2b)
⇒v=at+bx
⇒vx=at+b
Differentiating with respect to x
⇒dvdx×x+v=a×dtdx
Multiply both side by v
⇒(vdvdx)x+v2=a
⇒a′x=a=v2
a′x=a−(at+bx)2
a′x=ax2−(at+)2x2
⇒a′x=a(at2+2bt+c)−(at+b)2x2
⇒a′x=ac−b2x2
⇒a′=ac−b2x3
∴a′∝1x3
∴n=3