The correct option is E x−3
Given, x2=2t2+6t+1 ...(i)
Differentiating Eq. (i) w.r.t. t, we get
2xdxdt=4t+6
2xv=4t+6 (∵v=dxdt)
xv=2t+3 ...(ii)
Now, again differentiating Eq.(ii) w.r.t. t, we get
xdvdt+vdxdt=2
x.a+v.v=2 (∵a=dvdtand v=dxdt)
xa+v2=2 ...(iii)
Here, v2=4t2+12t+9x2
v2=2(2t2+6t+1)+7x2
v2=2x2+7x2 ...(iv)
Put the value of v2 in Eq. (iii) from Eq. (iv), we get
xa+2x2+7x2=2
x3a+2x2+7=2x2
x3a+7=0
x3a=−7
a=−7x3
Hence, the acceleration varies with x−3