The distinct points A1(0,0),A2(0,1),A3(1,0) and A4(2a,3a) are concylic then
We have,
A1(0,0),A2(0,1),A3(1,0),A4(2a,3a)
Now,
We know that,
The equation of circle be x2+y2+2gx+2fy+c=0
At the point A1(0,0)
So,
c=0
At the point A2(0,1)
So,
0+1+0+2f+c=0
⇒1+2f+c=0
Ifc=0
So,
⇒2f+1=0
⇒f=−12
At the point A3(1,0)
So,
1+0+2g+0+0=0
⇒g=−12
The equation of circle is
x2+y2+2gx+2fy+c=0
Lies the point (2a,3a)
So,
4a2+9a2+2×−12×2a+2×−12×3a+0=0
⇒13a2−2a−3a=0
⇒13a2−5a=0
⇒a(13a−5)=0
⇒a=0,13a−5=0
⇒a=0,513
Hence, this is the answer.