The domain of definition of f(x)=√x−3−2√x−4−√x−3+2√x−4 is
[4,∞)
f(x)=√x−3−2√x−4√x−3+2√x−4
For f(x) to be defined, x−4≥0
⇒x−4≥0⇒x≥4……(1)
Also, x−3−2√x−4≥0⇒x−3−2√x−4≥0⇒x−3≥2√x−4⇒(x−3)2≥(2√x−4)2⇒x2+9−6x≥4(x−4)⇒x2−10x+25≥0
⇒(x−5)2≥0, which is always true.
Similarly, x−3+2√x−4≥0 is always true.
Thus, dom (f(x))=[4,∞)