The domain of definition of the function f(x)=√x−2x+2+√1−x1+x is
ϕ
f(x)=√x−2x+2+√1−x1+x
For f(x) to be defined,
x+2≠0⇒x≠−2……(1)
And 1+x≠0
⇒x≠−1……(2)
Also, x−2x+2≥0
⇒(x−2)(x+2)(x+2)2≥0⇒(x−2)(x+2)≥0⇒xϵ(−∞,−2)∪[2,∞]……(3)
And, 1−x1+x≥0
⇒(1−x)(1+x)(1+x)2≥0⇒(1−x)(1+x)≥0⇒xϵ(−∞,−1)∪[1,∞)……(4)
From (1), (2), (3) and (4), we get,
xϵϕ
Thus, dom(f(x))=ϕ