The correct option is B (−∞,−2)∪[−1,2]
For f(x) to be defined,
4−x2[x]+2≥0 and [x]+2≠0 i.e., x∉[−2,−1)
Case 1: 4−x2≥0,[x]+2>0,x∉[−2,−1)
⇒x∈[−2,2],x∈[−1,∞)
∴x∈[−1,2]⋯(1)
Case 2 :
4−x2<0,[x]+2<0,x∉[−2,−1)
⇒x∈(−∞,−2)∪(2,∞),x∈(−∞,−2)
∴x∈(−∞,−2)⋯(2)
So, from 1 and 2,
x∈(−∞,−2)∪[−1,2]