The correct option is B (−∞,−2)∪[−1,2]
Given : f(x)=√4−x2[x]+2
For f(x) to be defined, we get
4−x2[x]+2≥0 and [x]+2≠0⇒[x]≠−2∴x∉[−2,−1)
Case 1:4−x2≥0, [x]+2>0
⇒x∈[−2,2], x∈[−1,∞)∴x∈[−1,2]⋯(1)
Case 2:4−x2<0, [x]+2<0
⇒x∈(−∞,−2)∪(2,∞), x∈(−∞,−2)∴x∈(−∞,−2)⋯(2)
So, from (1) and (2), we get
x∈(−∞,−2)∪[−1,2]