The correct option is A (0,14)∪(34,1)∪N−{1}
For,
f(x)=√logx(cos2πx) to be defined,
(i)logx(cos2πx)≥0
(ii)x>0, x≠1,cos2πx>0
For x∈(0,1)⇒2πx∈(0,2π)
and logx(cos2πx)≥0
⇒cos2πx≤1∴0<cos2πx≤1⇒2πx∈(0,π2)∪(3π2,2π)⇒x∈(0,14)∪(34,1)
For x∈(1,∞)⇒2πx∈(2π,∞)
⇒logx(cos2πx)≥0
⇒cos2πx≥1 but cos2πx≤1
⇒cos(2πx)=1⇒2πx∈{2nπ,n>1,n∈N}⇒x∈N−{1}