The correct option is D [−2, 1)∪(1, 2)
We havef(x)=1log10(2−x)+√x+2Let g(x)=1log10(2−x) and h(x)=√x+2Thus, f(x)=g(x)+h(x)Domain (f)=Domain (g(x)) ∩ Domain (h(x))Now, g(x)=1log10(2−x) is defined for all x for which log10 (2−x) is defined and log10(2−x)≠0⇒2−x>0 and 2−x≠1⇒x<2 and x≠1⇒x∈(−∞, 1)∪(1, 2)Domain (g) =(−∞, 1)∪(1, 2)And, h(x)=√x+2 is defined for all x satisfying,x+2≥0⇒x≥−2⇒x∈[−2, ∞).Domain (h) =[−2, ∞)Hence, Domain (f)={(−∞, 1)∪(1, 2)}∩[−2, ∞)⇒ Domain (f)=[−2, 1)∪(1, 2)