The correct option is
B (−3,−2)∪(−2,−1)∪(1,∞)logx+3(x2−1) is defined when
x+3≠1 and x+3>0 and x2−1>0
⇒x≠1−3 and x>−3 and (x−1)(x+1)>0
⇒x≠−2 and x>−3 and (x−1)(x+1)>0
⇒x≠−2 and x∈(−3,∞) and x∈(−∞,−1)∪(1,∞)
⇒x≠−2 and x∈(−3,∞)∩[(−∞,−1)∪(1,∞)]
⇒x≠−2 and x∈(−3,−1)∪(1,∞)
⇒x∈(−3,−1)∪(1,∞)−{−2}
∴x∈(−3,−2)∪(−2,−1)∪(1,∞)
Hence Domain is x∈(−3,−2)∪(−2,−1)∪(1,∞)