The correct option is B (√2,∞)
For the function f(x)=√logx2−1x to be defined,
(i) x>0 and x2−1>0 and x2−1≠1
⇒x>0 and x∈(−∞,−1)∪(1,∞) and x≠±√2
⇒x∈(1,√2)∪(√2,∞) …(1)
(ii)log(x2−1)x≥0
Let x∈(1,√2)⇒x2−1∈(0,1)
So, log(x2−1)x≥0⇒x≤1
⇒x∈ϕ …(2)
Let x∈(√2,∞)⇒x2−1∈(1,∞)
So, log(x2−1)x≥0⇒x≥1
∴x∈(√2,∞) …(3)
∴Domain of the given function is x∈(√2,∞)