The correct option is D R
We have,
f(x)=√x12−x3+x4−x+1
For f(x) to be defined,
x12−x3+x4−x+1≥0
⇒x12+x4+1≥x3+x⋯(1)
Here in L.H.S we have even powers and R.H.S have odd powers of x. So, for all x≤0, (1) will be true
Now the power of x in L.H.S are greater than the power of x in R.H.S and L.H.S≥1. So, for all x>0,(1) will be true
Therefore, the domain of f(x) is R