The correct option is B (−5,−4)∪(−4,−√2)∪[2,∞)
For log5+x(x2−2),
5+x>0 and 5+x≠1⇒x∈(−5,−4)∪(−4,∞)
Also, (x2−2)>0
⇒x2>2⇒x∈(−5,−4)∪(−4,−√2)∪(√2,∞) ⋯(1)
For [log10(x2−x2)]1/2,
log10(x2−x2)≥0
⇒x2−x2≥1
⇒x2−x≥2
⇒x2−x−2≥0
⇒(x+1)(x−2)≥0⇒x∈(−∞,−1]∪[2,∞) ⋯(2)
Hence, from (1) and (2),
x∈(−5,−4)∪(−4,−√2)∪[2,∞)