Let the coordinates of end points of the chord be
P(acosθ1,bsinθ1) and Q(acosθ2,bsinθ2)
Equation the Focal chord is,
y−bsinθ2x−acosθ2=bsinθ1−bsinθ2acosθ1−acosθ2⇒y−bsinθ2x−acosθ2=−bacos(θ1+θ22)sin(θ1+θ22)⋯(1)
When a>b,
Focus will be (ae1,0), putting this point in the equation of the focal chord,
−bsinθ2ae1−acosθ2=−bacos(θ1+θ22)sin(θ1+θ22)⇒e1cos(θ1+θ22) =cosθ2cos(θ1+θ22)+sinθ2sin(θ1+θ22)⇒e1=cos(θ1−θ22)cos(θ1+θ22)
When a<b,
Focus will be (0,be2), putting this point in the equation of the focal chord,
⇒be2−bsinθ2−acosθ2=−bacos(θ1+θ22)sin(θ1+θ22)⇒e2=cos(θ1−θ22)sin(θ1+θ22)
Therefore,
1e21+1e22=1cos2(θ1−θ22)⇒cos2(θ1−θ22)(1e21+1e22)=1