The correct option is B √2
x2−y2−4x+4y+16=0
⇒(x2−4x)−(y2−4y)=16
⇒(x2−4x+4)−(y2−4y+4)=−16
⇒(x−2)2−(y−2)2=−16
⇒−(x−2)242+(y−2)242=1
Shifting the origin at (2,2), we obtain
−X24+Y24=−1 where x=X+2,y=Y+2.
Clearly it is a rectangular hyperbola whose eccentricity is always √2
Hence, option 'B' is correct.