The correct option is D √53
4x2+9y2+8x+36y+4=0
4(x2+2x)+9(y2+4y)=−4
⇒(x2+2x+1)+9(y2+4y+4)=−4+4+36
⇒4(x−1)2+9(y+2)2=36
⇒4(x+1)236+9(y+2)236=1
⇒(x+1)29+(y+2)24=1
Comparing it with x2a2+y2b2=1, we get:
a=3 and b=2
So, the major and the minor axes of the ellipse are along the x-axis and y-axis, respectively
Now, e=√1−b2a2
⇒e=√1−49
⇒e=√59
⇒e=√53