The correct option is D 5/4
9x2+25y2−18x−100y−116=0
⇒9(x2−2x)+25(y2−4y)=116
⇒9(x2−2x+1)+25(y2−4y+4)=116+100+9
⇒9(x2−1)2+25(y−2)2=225
⇒9(x−1)2225+25(y−2)2225=1
⇒(x−1)225+(y−2)29=1
Comparing it with x2a2+y2b2=1, we get:
a=5 and b=3
Here, a>b so the major and the minor axes of the ellipse are along the x-axis and y-axis, respectively
Now, e=√1−b2a2
⇒e=√1−925
⇒e=√1625
⇒e=45