The eccentricity of the ellipse ax2+by2+2fx+2gy+c=0 if axis of ellipse parallel to x-axis is
(√b−ab)
ax2+by2+2fx+2gy+c=0a{x2+2fxa}+b{y2+2gyb}+c=0⇒a(x+fa)2+b(y+gb)2=(f2a+g2b−c)⇒(x+fa)2(f2a+g2b−c)a+(y+gb)2(f2a+g2b−c)b=1
if e eccentricity, then
(f2a+g2b−c)b=(f2a+g2b−c)a(1−e2)⇒1−e2=ab⇒e2=b−ab∴ e=√(b−ab)