The eccentricity of the hyperbola 4x2−y2−8x−8y−28 is equal to ___ .
2
√5
√7
4x2−y2−8x−8y−28{4(x−1)2−4}−{(y+4)2−16}−28=04(x−1)2−(y+4)2=16(x−1)24−(y+4)216=1
For the above hyperbola, the eccentricity is given by e=√a2+b2a=√4+162=2√52=√5
Then eccentricity of the Ellipse 4x2+y2−8x−2y+1 = 0