The correct option is D (1,−1)
A=[1−1−11]
For eigen values,
|A−λI|=0
⇒∣∣∣1−λ−1−11−λ∣∣∣=0
1+λ2−2λ−1=0
λ=0,2
For λ=0
AX=0
[1−1−11][xy]=[00]
x−y=0−x+y=0]⇒y=x
Let x=k⇒y=k
So, X=[kk]=k[11],kϵR
Hence option (c) is correct.
By similar logic for
λ=2, we get X=k[1−1]
So option (d) is also correct.