The correct option is B 12
Given matrix,
A=[1202]
The characteristic equation is |A−λI|=0
∣∣∣1−λ202−λ∣∣∣=0
(λ−1)(λ−2)=0
∴λ=1, 2
Thus the eigen values are 1, 2.
It x, y be the components of an eigen vector corresponding to the eigen value 1, then (A−λI)X=O
[1−λ202−λ][xy]=0
corresponding to λ =1, we have
[0201][xy]=[00]
y=0
Let x=k,k∈R
So, X1=[k0]∼[10]=[1a] (given)
∴[10] eigen vector for eigen value λ = 1
Corresponding to λ =2,wehave[−1200][xy]=[00]
−x+2y=0
x=2y
Now, let y = k, x = 2k then
X2=[2kk]∼[21]∼[112]=[1b] (given)
So, a+b=0+1/2=12
Alternative solution :
|A−λI|=∣∣∣1−λ202−λ∣∣∣=0
(1−λ)(2−λ)=0
⇒λ=1,2
λ1=1,X1=[1a]
λ2=1,X2=[1b]
AX=λX
⇒[1202][1a]=1[1a]
⇒1+2a=1
⇒a=0
[1202][1b]=2[1b]
⇒1+2b=2
⇒b=12
a+b=0+12=12