Let ′a′ and ′d′ be the first term and common difference of an AP, respectively.
Now, by given condition, a8=12 a2
⇒ a+7d=12(a+d) [∵ an=a+(n−1)d]
⇒ 2a+14d=a+d
⇒ a+13d=0
⇒ a=−13d……(i)
And a11=13a4+1 (given)
⇒a+10d=13(a+3d)+1
⇒a+10d=a+3d+33
⇒3a+30d=a+3d+3
⇒2a+27d=3……(ii)
on Solving the equations gives
2(−13d)+27d=3 [Using eq.(i)]
⇒ −26d+27d=3
⇒ d=3
From Eq. (i), we have
a+13(3)=0
⇒a=−39
∴ a15=a+14d=−39+14(3)=3