Let a be the first term and d be the common difference of given AP.
Now, According to the question,
a8=12(a2) and a11=13(a4)+1
⇒2×(a+7d)=a+d⇒a+13d=0 ...(1)
and 3×(a+10d)=(a+3d)+3⇒2a+27d=3 ...(2)
On applying (2)−2×(1), we get
d=3
Putting d=3 in (1), we get
a+13×3=0⇒a=−39
Now, a15=a+14d=−39+14×3=3
∴a15=3