We know that,
→E=−▽ϕ
→▽.→E=ρ/ϵ0
Therefore,
ϕ=−V0/a4×xyz(x+y+z)
⇒→E=V0/a4×((2xyz+y2z+z2y)^i+(2xyz+x2z+z2x)^j+(2xyz+x2y+xy2)^k)
⇒ρ=ϵ0×V0/a4×(2yz+2xz+2xy)
Now,
ρ(a,a,a)=ϵ0×V0/a4×6a2=6ϵ0V0/a2
E(0,0,a)=V0/a4×(0)=0
ρ(0,a,a)=ϵ0×V0/a4×2a2=2ϵ0V0/a2
E(a,a,a)=V0/a4×4a3^i+4a3^j+4a3^k
E(0,a,a)=V0/a4×2a3^i