The energy needed for Li(g)⟶Li3+(g)+3e is 1.96×104kJmol−1. If the first ionization energy of Li is 520kJmol−1, the second ionization energy for Li in 3635×xkJmol−1. Find x. Given IE1 for H=2.18×10−18kJmol−1.
Open in App
Solution
Given
Li(g)⟶Li3+(g)+e;ΔH=1.96×104kJmol−1....(i)
Li(g)⟶Li+(g)+e;IE1=520kJmol−1....(ii)
Li+(g)⟶Li2+(g)+e;IE2=akJmol−1.....(iii)
Li2+(g)⟶Li3+(g)+e;IE3=bkJmol−1.......(iv)
Also
b=E1 for Li2+×NA=E1H×Z2×NA=2.18×10−18×32×6.023×1023Jmol−1
=11.81×103kJmol−1
∴ eqs (i),(ii),(iii),(iv)
1.96×104=520+a+11.81×103
a=7270kJmol−1
So the total second ionization energy is 3635×xkJmol−1=7270kJmol−1