We have,
E(t)=A2e−αt
E(t+Δt)=(A+ΔA)2 e−α(t+Δt)
E(t+Δt)=(A2+ΔA2+2AΔA) e−α(t+Δt)
Here, ΔA2 will be very small and hence neglected.
E(t+Δt)=(A2+2AΔA) e−α(t+Δt)
Now if you divide whole equation with E(t), we get
E(t+Δt)E(t)=(A2+2AΔA) e−α(t+Δt)A2e−αt
E(t+Δt)E(t)=(A2+2AΔA) e−ΔtA2
E(t+Δt)E(t)=(1+2ΔAA)e−Δt
Again, e−Δt is very small value and hence neglected.
E(t+Δt)E(t)=(1+2ΔAA)
E(t+Δt)E(t)−1=(2ΔAA)
% Error in E(t)=(2ΔAA)×100
% Error in E(t)=2×1.25%
% Error in E(t)=2.5%≈3%