The correct option is A √x+√y=2
Let the equation of straight line be
xa+yb=1 ....(1)
Given a+b=4 ....(2)
Differentiating eqn (1) w.r.t. a , we get
−xa2−yb2dbda=0
⇒xa2+yb2dbda=0 ....(3)
Differentiating (2) w.r.. t a, we get
1+dbda=0
⇒dbda=−1 .....(4)
From (3) and (4), we get
xa2=yb2 ....(5)
⇒xayb=ab
Adding 1 to both sides, we get
⇒1yb=4b
⇒b2=4y
⇒b=2√y
Also, by eqn (5), we get
a=2√x
Now, using (2), the envelope is
√x+√y=2