The correct option is C Only 1 real root
Consider the equation.
32x+1−14−3x+1=√1+9x+6×3x−1
⇒(3x)2×31−14−3x×31=√1+(3x)2+6×3x×3−1
⇒3t2−14−3t=√1+t2+2t (Letting,3x=t
⇒3t2−14−3t=1+t
⇒3t2−4t−15=0
⇒3t2−9t+5t−15=0
⇒3t(t−3)+5(t−3)=0
⇒(t−3)(3t+5)=0
t=3 or t=−53
⇒3x=31 or 3x=−53
⇒x=1(Since,3x is always positive)
Therefore, the given equation has only 1 real root.
Hence, the correct answer is option (3).