The equation 3sin2x+2cos2x+31−sin2x+2sin2x=28 is satisfied for the values of x given by
3sin2x+2cos2x+31−sin2x+2(1−cos2x)=283sin2x+2cos2x+(333sin2x+2cos2x)=28let3sin2x+2cos2x=t∴t+(27t)=28t2+27=28tt2−28t+27=0t2−27t−t+27=0t(t−27)−1(t−27)=0(t−27)(t−1)=0∴t=27ort=1ift=27,thensin2x+2cos2x=3whichisnotpossibleift=1,thensin2x+2cos2x=1atx=(3π8)