The correct option is A all rational roots
4logx2(√x)+2log4x(x2)=3log2x(x3)
⇒4log2(√x)log2(x/2)+2log2(x2)log2(4x)=3log2(x3)log2(2x)
⇒4×12log2(x)log2(x)−1+4log2(x)2+log2(x)=9log2(x)1+log2(x)
Put log2x=t
2tt−1+4tt+2=9tt+1
⇒t=0 or 2t−1+4t+2=9t+1
⇒2t+4+4t−4(t−1)(t+2)=9t+1
⇒t2+t−6=0
⇒(t−2)(t+3)=0
⇒t=0,2,−3
⇒x=1,4,18