The correct option is D a=b=c
Let (α1,β1);(α2,β2);(α3,β3) be roots of the three equations repectively
⇒α1+β1=2ba;α1β1=ca
α2+β2=2cb;α2β2=ab
α3+β3=2ac;α3β3=bc.
This implies
a,b,c are all of the same sign.
∴ab>0,bc>0,ca>0
But for roots to exist,4b2−4ac≥0 ; 4c2−4ab≥0 ; 4a2−4bc≥0
⇒a2+b2+c2<ab+bc+ca……
Adding the three inequalities=12((a−b)2+(b−c)2+(c−a)2)≥0
⇒a=b;b=c;c=a
a=b=c